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CALCULATION OF POTENTIAL FLOW ABOUT AXIALLY SYMMETRIC FUSELAGES,
ANNULAR PROFILES AND ENGINE INLETS

W. GeisSler
Aerodynamische Versuchsanstalt G8ttingen der Deutschen

Forschungs- und Versuchsanstalt fUr Luft- und Raumfahrt (DFVLR).

1. Introduction /457*

A numerical method of calculation is given by A.M.O. Smith

and J. Pierce [1] for determining potential flow about axially

symmetric bodies which makes use of a surface distribution of

source-sink rings. While the case of oncoming flow parallel to

the axis is covered in [1], J. L. Hess [2] treats bodies of

revolution in transverse flow. A pure source-sink distribution is

not adequate for the special case of an annular profile. It

was shown in [3] that an additional circulation is necessary in

order to satisfy Kutta's flowoff condition at the trailing edge

of the annular profile. This circulation is likewise applied to

the profile surface in [3] as a ring-vortex distribution of

constant vorticity.

An expanded theory is presented in the following article

which covers the case of an annular profile or body of revolution

in a more general form of oncoming flow (parallel flow which is

parallel or oblique to the axisi interference effects). To solve

this problem, Smith and Pierce's method of surface distribution

(panel method) is combined with a formulation by F. W Riegels [4]

and J. Weissinger [6] for the variation in flow parameters in

the tangential direction.

* Numbers in the margin indicate pagination in the foreign text.
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The general method for annular profiles, with suitable

simplifications, is also made applicable to power plant inlets and

axially symmetrical fuselages.

2. Notation

2.1. Geometric Quantities

x, r, p Cylindrical coordinates (position of plotted point)

x', r', ¢' Position of surface covered

RO Reference radius

ri  Inside radius

rh Hub radius

L Reference length

D Diameter

a Angle of attack (angle between axis of body of

revolution and oncoming-flow direction)

2.2. Aerodynamic Quantities /458

V Oncoming-flow velocity

v Induced velocity of system of singularities

y Vortex density

q Source density

p Static pressure

p, Pressure in undisturbed flow

q Stagnation pressure [= (p/2)V 2 ]

Cp Pressure coefficient [= (p - po)/qco

Flow index =- r vXY)dr

2.3. Subscripts

S Oncoming flow

x Axial
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r Radial

Tangential direction

y Vortex distribution

q Source distribution

N Normal to section contour

i Point plotted

j Position of surface covered

h Hub

iR Inside radius of annular contour

3. Problem; System of Singularities

The recalculation problem, the so-called second principle prob-

lem of the profile theory, will be solved for bodies of revolution.

The geometry of the body and the form of oncoming flow are

assumed to be known. Since interference effects must be taken

into consideration, in addition to parallel oncoming flows, the

disturbing body must also be represented by singularities.

Fig. 1 shows the system of singularities employed, exemplified

by an annulus section with a hub body. The cases of a fuse-

lage and a power plant inlet with varying flow through it can be

derived from this by suitable simplification of the vortex

system.

In Fig. 1, the surface of the annulus section and of the

hub body are covered with a continuous ring-source distribution.

A ring-vortex distribution (bound vortices) which is constant in

the axial direction lies on the surface of the annular profile,

so that Kutta's flowoff condition (smooth flowoff) is satisfied

at the trailing edge of the section. If the intensity of these

bound vortices changes in the tangential direction ¢ of the

profile, then, according to Helmholtz's third theorem of vortices,

free vortices must leave which follow the lines of flow. These

free vortices are assumed to travel along the profile contour in
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meridianal sections and are

r aEinzelheitA laid on a semi-infinite

vortex cylinder parallel with

-- the axis behind the profile.

b e on r iele Wirbel

-_ _ L ''4. Formulae3 Numerical

'Solution
gebundene Wirbel

___L_ __ _ --

Calculation is centered

Blickiactung: around the kinematic flow
von vorn

o condition: The normal com-

Fig. .l.. Annulus section with hub, ponents induced at the

system of singularities. position of the body of

Key: a. Detail A; b. Sources; revolution by the external
c. Free vortices; d. Bound
vortices; e. Viewed from up-
stream pensated for by a normal

component of the system of

singularities of equal magnitude and opposite direction:

q Ni = VNi + vy Ni (at plotted point i) (1)

In equation (1), the normal velocity of the entire vortex

system vy Ni has been placed on the right side of the equation

along with the normal oncoming-flow component VNi. Vortex strength

y, which is contained in vy Ni' is first arbitrarily set equal to

1, for example. Vortex strength is not calculated until later,

with the aid of Kutta's flowoff condition. The normal components

of the two terms on the right side of (1) must be compensated for

by suitable source distributions q(x,q).

Velocity components vq and vy are calculated with the aid of

the Biot-Savart law. Equation (1) thus yields a two-dimensional

(x- and c-dependent) integral equation for determining the un-

known source distribution q which is contained in vq N. This
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two-dimensional integral equation can, according to F. W. Riegels

[4] and J. Weissinger [6],. be transformed into a sum of one-

dimensional (x-dependent, only) integral. equations by means of

Fourier series for VN and for source strength q and vortex strength

y. With

Vv (x', qi) V V ' (2)

(1) is transformed to

) p(5)

(i = 1, 2, , n)

Equation (5) applies to each oncoming-flow case n.

In (5), q represents the source strength sought for the

compensation of VNi; gqyj compensates for the resultant normal

component of the vortex system (vyN). The particular advantage in

using expressions (2) through (4) is that the dependence upon

tangential angle is eliminated in equation (5). A single-

dimensional (x-dependent, only) system of equations thus remains in /459

which n = 0,1,2,... each represent a specific oncoming-flow case.

In the form of (5), we already have the kinematic flow condi-

tion as a linear system of equations with two terms on the right.

In the panel method described by J. L. Hess [2], the surface of the

body of revolution is divided into conic frustums of small axial

extension, distributed as uniformly as possibly. The kinematic flow
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condition is satisfied at the center of the surface of each such

conic frustum. In (5), Nqij indicates the effect of frustum j,

covered with source rings, at plotted point i. The sum of normal

components of all m-intervals yields the resultant normal compo-

nent at point i.

Solution of the system of linear equations (5) now yields

amplification factors gqj, gqyj for each case of oncoming flow n.

The associated tangential velocities at the surface of the body

can thereby be calculated. The sum of tangential velocities from

all cases of oncoming flow finally yields resultant velocity for

calculating the pressure distribution.

The "influence function" Nq and the resultant normal velocity

of the overall vortex system vyN are determined in a complex

manner by the geometry of the body of revolution. These functions

will not be described in detail here.

The dependence of the functions upon tangential direction 4

can always be reduced to integrals of the form

.2

G,, (k2) = (- 1) (1 -- k sin2 )n d, (6)
f - k sin' )3/2

where

4 r r"

(x - x') +(r )2' - = '-

These functions have been presented and tabulated by F. W. Riegels

[4, 5]. The subscript n in (6) is identical to the subscript n

in Fourier series (2). through (4). These G functions are con-

structed recursively from the complete elliptic integrals of the

first and second types and are particularly well suited to numeri-

cal calculation.
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5. Examples of Applications

5.1. Axially Symmetrical Fuselages

The method initially described for annular profiles can be

likewise applied to closed axially symmetrical fuselages, with

simplification. The assumption is made, however, that the fuselage

possesses no lift. A pure source-sink distribution on the surface

of the body is then sufficient, and the kinematic flow condition

(1) is simplified to

q Ni VNi" (7)

Thus systems of linear equations are produced with only one term

on the right side in each case, and each result is just a solution

vector gq-j*

In the case that the freestream is parallel to the axis has

already been studied in detail in [31 for various fuselage-type

bodies.

Fig. 2 shows calculated pressure distributions for different

meridianal sections (c = 00, 600, 1800) of a body of revolution,

in oblique oncoming flow, which converges to a point in front and

becomes a cylindrical shaft downstream. In the case of oblique

oncoming flow, only the first two terms (n = 0 and 1) are required

in series (2) through (4).

The calculations have been compared with measurements made in

the transonic wind tunnel at AVA GSttingen by E. Wedemeyer. In

the upstream region of the body, the discrepancy between theory and

measurement is slight and is caused by the Mach number effect.

Only in the x/L = 1 region do the deviations become larger at

S= 1800. Paint patterns indicate that a local separation "bubble"

occurs in this area.
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2---- -I L 52'. 'Power52.* Pwer Plant Inlets

o 600 Mr5 r na
]80 o . Power plant inlets are

0-some other configurations to

which the method described can
o

be applied. The upstream

-- - portion of an annular profile

inkompre obc I is involved here whose con-

0o 0,2 , D6 o, o ;,2 tours extend downstream in

cylindrical form. The system
Fig. 2. Fuselage in oblique
freestream. of singularities outlined in

Key: a. Measured data; Fig. 1 is used, but without

b. Calculated data; incom- free vortices. For simplifica-
Pressible.

tion, only a constant vortex

strength is assumed here in the tangential direction on this body

of revolution (n = 0 in series (4)). Vortex strength is deter-

mined with the aid of mass throughflow.

The dimensionless throughflow index is defined as

= dr . (8)

where v x(r) is resultant axial velocity in the internal cross

section, composed of the effect of the system of singularities and

an external freestream component. Using the panel method makes it

possible to write formula (8) as a formula of sums and to solve

it with respect to circulation strength y, and thus to calculate

the associated y for a given mass throughflow.

A power plant inlet with a hub body is outlined in Fig. 3 on

which measurements were performed at the AVA G~ttingen during the

1940s by D. KUchemann and J. Weber [7]. The comparative experi-

mental results have been taken from that report.
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a^le.s5,nq: ~ Fig, 3 a shows

bNoab 0.22 _9 pressure distribution on

O- 0 the internal contour and
'd b 1.

CI InnenNabe cp @ eouen hub. Pressure distribu-P- i0 0.5 ---
o 0 1.~2 0.5 ?0 5 tions on the external0 ..... . 1- I -/

10 15 0x j' contour of the inlet are /460
s a r~; V~

~ |  ,9 shown in Fig. 3 b.

-' 1, -O. 1
--- oonL Grenzsch,cht-f Fig. 3 c contains measuredI - m1et korroktur Vrkldung

1,. c .........- velocity distributions
0 0.5 s t

0 @ - o over the internal cross

Sa her 26 section of the cylindrical
b Nabe

portion. The parameter in
Fig. 3. Cowl 1 with hub, a = 00,

each case is throughflow
with boundary layer correction.

Key: a. Measured data; b. Hub; index as defined in (8),

c. Cowl; d. Inside; e. Outside; assumed to have equal
f. Without/with boundary layer measured and theoretical
correction:

values.

The results of calculations without friction are first plotted

in Fig. 3 as dashed curves. Pronounced deviations from the

measured values are observed, particularly in the rear inlet sec-

tion. Better agreement can be obtained with the following boundary

layer correction: the results from the potential theory calcula-

tion serve as input for a boundary layer program [8]. The dis-

placement thickness of the boundary layer is determined from the

boundary layer calculation and is added to the body contour. A

second potential theory calculation is carried out for the same

throughflow coefficient C for the body contour which has been

modified in this manner. The results of this calculation are shown

as solid curves in Fig. 3 a: They are distinctly closer to the

measured values.

In the measurements, however, an additional acceleration of the

internal flow is caused by a separation bubble which occurs down-

stream from the pronounced pressure minimum on the internal
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contour and which results. in an additional displacement. We find

this separation blister to bearegion of reduced velocity in the

measured velocity distribution in Fig. 3 c. The effect of the

boundary layer upon pressure distribution on the external contour

(Fig. 3 b) is only very slight.

Fig. 4 shows the same inlet contour in an oblique freestream

(a = 100). Here, excellent agreement with the measured data is

found on the outside. Separation is clearly evident on the inside

at the pressure minimum (at 4 = 00). Thus agreement is not so

good in the rear inlet section, due to boundary layer effects. No

boundary layer correction was undertaken here.

5.3. Stationary Inlets

1,0

Cp ~ ssu ng Einlauf The stationary inlet

S a IP=ol represents an extreme case

0 Po 05 X o0 in which a clean flow to the
5 0. 5  2xi ,5- compressor of a power plant

-0,5 I=100
S n Nae e must still be guaranteed.

-10o, I No external oncoming flow

P=180 exists here. Calculation is

r simplified so that the

kinematic flow condition (2)

V=00 contains only one term on

the right:
Fig. 4, Cowl 1 with hub in oblique

oncoming flow, = 0.28,
v =v (9)

Key: a. Measured data; b. Inlet; q Ni y Ni

c. Hub; d. Inside; e. Outside

Only the normal components

of the constant circulation distribution must be compensated for

by a suitable source distribution.
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I The inlet contour

pi eorie j=24m/s described above is studied

0__ for the stationary case

Y s U =2 
1

4  
5 20 xgerehne and compared with measured

b U=22L mn/t; bei x/r 3 gerchnet
erkleidung 1 data in Fig. 5. Values in

the cylindrical inlet

portion serve as reference

-z Nbe 6 quantities. The reference

X_. velocity determined from

potential theory (22.4 m/sec)

proves to be too small, due
Fig. 5. Cowl 1 with hub, stationary.

to acceleration caused by
Key: a. Theory / measured data;
b. Ui = 22.4 m/s calculated at the boundary layer. The

x/ra = 3; c. Cowl; d. Hub. pressure minimum (dashed

curve) is too highly pro-

nounced. If we use the reference velocity determined by

measurement (24 m/sec), we obtain good agreement between measure-

ment and theory.

5.4. Annular Profiles of Finite Length

Pressure distributions about three axially symmetric annular

profiles with central bodies have already been calculated in

[3] and compared with measurements made in the Royal Aircraft

Establishment in England [9]. The case of oblique oncoming flow

will be studied in the following.

The entire system of singularities shown in Fig. 1 is required

for this problem, including the system of free vortices. Again,

the first two terms n = 0 and 1 are to be used in series (2) through/461

(4) for an oblique freestream.
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Fig. 6 contains calculated pressure distributions and those

measured in the RAE' on an annular profile with a central body

at a 50 angle of attack. Agreement between measurement and theory

is quite satisfactory in all sections studied. Relatively large

deviations are observed in the downstream inside portion of the

annular profile. Again, this may possibly involve an accelera-

tion of flow by the effect of the boundary layer at the internal

contour and hub body (see Section 5.2).

6. Bodies of Revolution in
the Fields of Disturbing
Bodies (Interference

SMa = 0,3 Problem)
CP Cowl 3 a= 50

01 0 2
0 1 x 2 Until now, bodies of

revolution have only been

studied in parallel flows.

For these cases, the term
SPNA Nobe '=0o

n = 0 (parallel to axis) or

S-2-- oluenb the terms n = 0 and 1 (ob-
A 180o Oun 9 Ab

P= 0o Messun gEC lique to axis) were suffi-
a 90 innend
S5180o cient in series (2). If the

Fig. 6. Annular profile in oblique effect of a disturbing body
freestream (cowl 3), a = 50 .  in the vicinity of the body

Key: a. Hub; b. Outside; of revolution is to be taken
c. Measured data RAE; d. Inside

into consideration, we need

additional terms in the

Fourier series, and thereby obtain a correspondingly higher number

of systems of linear equations (5). The condition is that the

disturbing body can also be represented by a system of singularities.

Interference calculations can be carried out iteratively: The

calculations are first made for the. body of. revolution and the

These experimental results have generously been made available
to me by Messrs. J. A. Bagley and C. Young.
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disturbing body, separately, in the associated parallel flow

(zeroth approximation). The effect of the source vortex strengths,

as determined from the zeroth approximation, upon the neighboring

body is then determined, and again source vortex strengths to

compensate for these effects are calculated here (first approxima-

tion). This can be followed by a second and third approximation.

Experience shows that it is possible to stop at just the second

approximation with sufficient accuracy.

6.1. Annular Profile Near the Ground

An annular profile (without central body) close to the ground

was studied at two different heights above the latter as an im-

portant example of such an interference calculation (Fig. 7). The

effect of the ground can be simulated in accordance with the

reflection principle by a second annular profile at twice the

distance of the ground. In this case, the disturbing body is thus

again an annular profile. For this problem it is sufficient to

consider the first six cases of oncoming flow, n = 0, 1, ... , 5.

This method can be used to

S1 /© 8- s 0 treat a whole series ofC I inn.n C
-____ _ additional interference problems,°T-- 1o,.- -- 7 .

0.5 1,0 x 2a few of which might be men-

fX '-uon tioned here: Interference
1 . " . between an annular profile and a

--. fuselage; two annular profiles

"" in a bypass arrangement (with and

0o5s Fo X without oblique flow); inter-

B ferences between an annular

profile and a symmetrical wing.

Fig. 7. Annular section (cowl
2) with ground.

Key: a. Outside; b. Without
ground; c. Inside
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7. Summary

A method of singularities has been given for calculating

potential flow about bodies of revolution. The bodies of revolu-

tion here can be in a general form of oncoming flow, i.e. besides

parallel flows (parallel to the axis or oblique to the axis), it

is also possible to take interference effects caused by dis-

turbing bodies into consideration. For the three-dimensional

normal component distribution which occurs on the body of revolu-

tion, as in the case of the source-sink and: vortex distributions,

a Fourier series is set up for the compensation of these normal

components. The use of this series makes it possible to transform

the kinematic flow condition, which initially appears as a

two-dimensional (x- and C-dependent) integral equation, into a

sum of one-dimensional (x-dependent, only) integral equations,

which can be solved separately with the aid of linear equations,

via a panel method.

It has been shown that the method can be applied both to

closed fuselage contours (without lift, however) and to power

plant inlets with and without oncoming flow and annular profiles

of finite length. The computed potential flow results agree well

with the measured data.
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